
A COMPUTATIONALLY EFFICIENT SEMI-BLIND SOURCE SEPARATION APPROACH
FOR NONLINEAR ECHO CANCELLATION BASED ON AN ELEMENT-WISE ITERATIVE

SOURCE STEERING

Kunxing Lu⋆, Xianrui Wang⋆†, Tetsuya Ueda⋆, Shoji Makino⋆, and Jingdong Chen†

⋆ Waseda University, Japan
† Northwestern Polytechnical University, Xi’an, China

ABSTRACT

While the semi-blind source separation-based acoustic echo cancel-
lation (SBSS-AEC) has received much research attention due to its
promising performance during double-talk compared to the tradi-
tional adaptive algorithms, it suffers from system latency and non-
linear distortions. To circumvent these drawbacks, the recently de-
veloped ideas on convolutive transfer function (CTF) approxima-
tion and nonlinear expansion have been used in the iterative pro-
jection (IP)-based semi-blind source separation (SBSS) algorithm.
However, because of the introduction of CTF approximation and
nonlinear expansion, this algorithm becomes computationally very
expensive, which makes it difficult to implement in embedded sys-
tems. Thus, we attempt in this paper to improve this IP-based al-
gorithm, thereby developing an element-wise iterative source steer-
ing (EISS) algorithm. In comparison with the IP-based SBSS algo-
rithm, the proposed algorithm is computationally much more effi-
cient, especially when the nonlinear expansion order is high and the
length of the CTF filter is long. Meanwhile, its AEC performance is
as good as that of IP-based SBSS.

Index Terms— Semi-blind source separation, acoustic echo
cancellation, convolutive transfer function approximation, nonlinear
expansion, element-wise source steering

1. INTRODUCTION

In telecommunications or teleconferencing, acoustic echo, which
is formed by the coupling between loudspeakers and microphones,
is detrimental to full-duplex communication. One widely used
way to eliminate the detrimental echo effects is through acoustic
echo cancellation in which adaptive filters, such as the normalized
least mean square (NLMS), recursive least mean square (RLS) and
Kalman filters [1, 2], are used to identify the acoustic impulse re-
sponse (AIR) [3]. While they have been widely used, adaptive filters
generally suffer from great performance degradation or even diver-
gence during double-talk in which both the far-end and near-end
speech are present [4, 5].

One way to improve acoustic echo cancellation (AEC) perfor-
mance during double-talk is through adopting the principle used in
blind source separation (BSS) [6–9] to reformulate the AEC prob-
lem as one of semi-blind source separation (SBSS) [10, 11]. Several
algorithms have been derived based on this SBSS framework, which
have demonstrated promising performance [12–14]. However, those
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algorithms still suffer from a number of drawbacks. First, they are
computationally very expensive, which makes them difficult to im-
plement in embedded systems. A viable approach to reduce com-
plexity is through using the so-called multiplicative transfer function
model (MTF) [15] and performing echo cancellation in the short-
time Fourier transform (STFT) domain [16, 17]. But this method
increases the system latency as MTF requires the length of the anal-
ysis window to be longer than the effective part of AIR. Recently,
the so-called convolutive transfer function (CTF) [18–20] model was
applied to SBSS-AEC to achieve different compromise between the
system latency and computational complexity [21, 22]. Second, the
performance of SBSS-AEC suffers from significant degradation in
the presence of loudspeaker nonlinearity, which happens often in
small devices [23, 24]. One way to deal with this issue is through
nonlinear AEC in which nonlinear expansion [25–27] is used to
model the loudspeaker nonlinearity [28]. In [22], researchers pro-
posed a framework which combines the CTF model and nonlinear
expansion. An iterative projection (IP) [8] method is carried out to
solve the corresponding optimization problem.

However, the IP-based algorithm still faces the challenge of
computational complexity, as it requires to calculate the inverse of
an auxiliary matrix. To circumvent this problem, we attempt in this
work to reduce the complexity, thereby developing an element-wise
source steering (EISS) algorithm, which is an extension of the work
in [29–31]. Since no matrix inverse is required, the developed algo-
rithm is computationally much more efficient and its complexity is
one order of magnitude lower than that of the IP-based algorithm,
yet its performance is as good as that of the IP-based algorithm.

2. SIGNAL MODEL AND PROBLEM FORMULATION

Consider the full-duplex speech communication scenario where a
microphone is used to pick up the sound signal from the near-end
speaker and a loudspeaker is used to playback the signal from the
far-end. The microphone output signal at time instant t, which is
denoted as y(t), can be written as

y(t) = v(t) + s(t),

= a(t) ∗ f [x(t)] + s(t), (1)

where s(t) denotes the near-end speech signal, v(t) = a(t)∗f [x(t)]
is the nonlinear acoustic echo, a(t) denotes the acoustic impulse
response from the loudspeaker to the microphone, ∗ represents the
linear convolution, f(·) stands for the response of the loudspeaker,
which includes both the linear and nonlinear effects, and x(t) is the
far-end signal, respectively. The problem of acoustic echo cancel-



lation is to mitigate or eliminate the echo signal, i.e., v(t), while
preserving the near-end signal s(t).

While they have been widely used in practical systems, adaptive
filtering algorithms often suffer from great performance degradation
in the presence of loundspeaker nonlinearity. One way to deal with
loundspeaker nonlinear distortion is to approximate f [x(t)] through
a P th-order basis-generic expansion [26], i.e.,

f [x(t)] =

P−1∑
p=0

cpϕp [x (t)] , p = 0, 1, . . . , P − 1, (2)

where ϕp (·) is the p-th order basis function and cp is the correspond-
ing coefficient. For real-valued signal, the following expansion can
be used,

ϕp [x (t)] = x2p+1(t). (3)

Substituting (2) into (1) gives

y(t) =

P−1∑
p=0

cpa(t) ∗ ϕp [x (t)] + s(t),

=

P−1∑
p=0

a′
p(t) ∗ ϕp [x(t)] + s(t), (4)

where a′
p(t) = cpa(t) denote the echo path of the p-th order ex-

panded signal ϕp [x(t)].
To reduce the computational complexity, the MTF model is in-

troduced, which requires the analysis window to be longer than the
effective part of AIR, leading to larger system latency. To achieve
proper compromise between the computational complexity and sys-
tem latency, the CTF approximation is subsequently adopted. The
signal model in (4) is then written in the STFT domain as

Yi,j =

P−1∑
p=0

L−1∑
l=0

A′
p,i,lXϕ,p,i,j−l + Si,j , (5)

where i and j denote the frequency and time-frame indexes, L is
the length of the CTF filter, and Yi,j , A′

p,i,j , Xϕ,p,i,j , Si,j denote,
respectively, the STFTs of y(t), a′

p(t), ϕp [x(t)] and s(t). Putting
(5) into a vector/matrix form gives

ỹi,j = H̃i,j s̃i,j , (6)

where
ỹi,j =

[
Yi,j xT

0,i,j · · · xT
P−1,i,j

]T
, (7)

Yi,j =

P−1∑
p=0

aT
p,i,jxp,i,j + Si,j , (8)

ap,i,j = [A′
p,i,0 · · · A′

p,i,L−1]
T , (9)

xp,i,j = [Xϕ,p,i,j · · · Xϕ,p,i,j−L+1]
T , (10)

s̃i,j =
[
Si,j xT

0,i,j · · · xT
P−1,i,j

]T
, (11)

H̃i,j =

 1 aT
i,j

0PL×1 IPL

 , (12)

ai,j =
[
aT
0,i,j aT

1,i,j . . . aT
P−1,i,j

]T
, (13)

the superscript T denotes the transpose operation, and IPL denotes
the identity matrix of size PL×PL. Note that the H̃i,j matrix is of
size (PL+1)× (PL+1), which is called the mixing matrix in the
literature of BSS, 0PL×1 is a zero vector of length PL.

Following the notation in BSS and echo cancellation, we now
define the demixing matrix W̃i,j as

W̃i,j =

 1 bT
i,j

0PL×1 IPL

 , (14)

where bi,j is a column vector with PL parameters to be estimated.
The near-end signal extraction filter can then be expressed as w̃H

i,j =
[1 bT

i,j ]. Applying the near-end signal extraction filter to the input
signal gives the near-end signal, i.e.,

Ŝi,j = w̃H
i,j ỹi,j . (15)

Given the aforementioned signal model and problem formulation,
the objective of nonlinear SBSS-AEC is to estimate w̃i,j by exploit-
ing independence between the near-end and the reference signals.

3. NONLINEAR SBSS-AEC ALGORITHMS

3.1. Probabilistic Model

We consider to model the source signal with a generalized Gaussian
distribution, i.e.,

p (sj) ∝ exp

[
−
(
∥sj∥2
γ

)β
]
, (16)

where
sj = [S1,j S2,j . . . SI,j ]

T , (17)

∥·∥2 stands for ℓ2 norm. γ and β are the scale and shape parameters,
respectively. Since the reference signal is accessible, the negative
log-likelihood function can then be calculated as

Lj =− 1∑j
j′=1 α

j−j′

j∑
j′=1

αj−j′ log p (sj′)

− 2

I∑
i=1

log | detW̃i,j |,

(18)

where α ∈ (0, 1) is a forgetting factor. By using the well known
majorization-minimization (MM) method [32], the following auxil-
iary function can be obtained

L+
j =

I∑
i=1

w̃H
i,jVi,jw̃i,j − 2

I∑
i=1

log
∣∣∣detW̃i,j

∣∣∣ . (19)

To track time-varying signals and acoustic environments, the recur-
sive estimation of Vi,j is generally used, i.e.,

Vi,j = αVi,j−1 + (1− α)φ(rj)ỹi,j ỹ
H
i,j , (20)



Fig. 1. Illustration of EISS update rule.

and

φ(rj) = rβ−2
j , (21)

rj =
√∑I

i=1 |w̃H
i,j−1ỹi,j |2. (22)

Note that the norm of the near-end signal extraction filter w̃i,j does
not affect the independence criterion. Therefore, a two-stage esti-
mation strategy can be used in which the extraction filter is updated
in the first stage using the maximum likelihood criterion and the up-
dated filter is then normalized in the second stage such that its first el-
ement is equal to 1. Since the extraction filters at different frequency
bins are estimated independently, we shall omit the frequency index
i in the rest parts of this paper without introducing any confusion.

3.2. Conventional Iterative Projection Based Method

The IP method can be derived by identifying the Wirtinger derivative
of (19) with respect to w̃i,j and then forcing the result equal to 0.
The update rules are shown as follows:

w̃j ← (W̃j−1Vj)
−1e1 = V−1

j e1, (23)

w̃j ←
w̃j

w1,j
, (24)

where e1 is the first column of IPL+1 and w1,j is the first element
of w̃j .

3.3. Proposed Element-wise Iterative Source Steering Method

Implementation of the IP method requires to compute the inverse of
the Vj matrix every frame, which makes the algorithm computation-
ally very expensive. To reduce the complexity, we propose to update
the near-end signal extraction filter with the EISS method in the first
stage [29–31], i.e.,{

w1,j ← w1,j−1 − u1,j , if k = 1

wk,j ← wk,j−1 − u1,jwk,j−1 − uk,j , if k ̸= 1
(25)

where wk,j , k = 1, 2, . . . , PL+1, is k-th element of w̃j and uk,j is
a parameter to estimate. All the uk,j’s need to be estimated sequen-
tially. In other words, the algorithm first computes u1,j to update
all the elements related to wj−1; it then computes u2,j to update
b1,j−1; it subsequently computes u3,j to update b2,j−1, and so forth.
The EISS update rules are illustrated in Fig. 1.

Substituting (25) into the auxiliary function, we obtain

L+
j (uk,j) =− 2 log |1− u1,j |+ dH

j Vjdj , (26)

where

dH
j =w̃H

j−1 − [u1,j u1,jb1,j−1 + u2,j

· · ·u1,jbPL,j−1 + uPL+1,j ] .
(27)

Identifying the Wirtinger derivative ofL+
j (uk,j) with respect to u∗

k,j

and forcing the result to be 0, one can obtain the following solution

uk,j =


w̃H

j−1vk,j

Vj(k, k)
, k ̸= 1

1− (w̃H
j−1Vjw̃j−1)

− 1
2 , k = 1

, (28)

where vk denotes the k-th column of Vj and Vj(k, k) stands for the
(k, k)-th element of Vj .

4. COMPLEXITY ANALYSIS

In this section, we present the complexity of the IP and EISS algo-
rithms in terms of the number of multiplications/divisions needed per
frequency bin and time frame. For the IP algorithm, the complexity
is dominated by computing the inverse of the covariance matrix Vj ,
which has a complexity proportional to O(PL + 1)3. The com-
plexity for all the other computations is of O(PL+ 1). For regular
setup, O(PL + 1) is much smaller than O(PL + 1)3. Therefore,
the complexity of the IP method is

CIP ∝ O
[
(PL)3

]
. (29)

The EISS algorithm needs to estimate PL+1 coefficients. Computa-
tion of uk,j , k ̸= 1 has a complexity ofO [PL(PL+ 1)]. The com-
plexity for computing u1,j is O

[
(PL+ 1)2

]
and it is O(PL + 1)

for all the other operations. Similarly, if we only consider the oper-
ations that dominate the complexity, the overall complexity of EISS
method is

CEISS ∝ O
[
(PL)2

]
, (30)

which is one order lower than that of the IP method.

5. SIMULATIONS AND EXPERIMENTS

5.1. Experimental Setup

In this section, the proposed EISS-based algorithm is compared with
the IP-based algorithm and the single-microphone form of the state-
space model (SSM)-based nonlinear acoustic echo cancellation algo-
rithm proposed in [27]. We evaluated the proposed AEC algorithms
with the help of objective measures to quantify the performance in
terms of echo reduction and speech distortion. For the single-talk
case, echo return loss enhancement (ERLE) [26] is used as the per-
formance metric, and for double-talk, true ERLE (tERLE) [17] is
used. Besides, perceptual evaluation of speech quality (PESQ) [33],
and short time objective intelligibility (STOI) [34] are also used for
performance evaluation. The sampling rate for all the signals in this
work is 16 kHz.

To assess the efficiency of our algorithm, we also conducted a
comparative analysis of the runtime performance between our algo-
rithm and an IP-based algorithm. We executed 100 signals, each
lasting 10 seconds, on a laptop equipped with an i7-10750H CPU
and computed the average runtime of each signal as the final test re-
sult. The average runtime is showned in Fig. 3. For the short-time
analysis, the frame length is 1024-point long with an overlap factor



of 75%. The Hanning window is applied and the windowed signal
is then transformed into the STFT domain with a 1024-point fast
Fourier transform (FFT). To balance the computational complexity
and performance, the nonlinear expansion order P is set to 3 and
the length of CTF filter L is set to 5. The forgetting factor α is set
to 0.992. The shape parameter β is set to 0.4. In all experiments,
the demixing matrix W̃ is initialized as an identity matrix I and the
auxiliary matrix V is initialized as 10−3 × I.

5.2. AEC Performance for Hard Clipping Mapping

In this experiment, we validate the ability of EISS to handle non-
linear distortion in both single-talk and double-talk scenarios. We
use the same data as in [22]. The hard clipping function [26] is
used to simulate the loudspeaker nonlinearity, in which the clipping
threshold is set to 0.2max|x(t)|. The reverberation time T60 is ap-
proximately 300 ms. The signal-to-echo ratio (SER) for double-talk
is 0 dB. Figure 2 (a) and (b) show the performance of the IP and
EISS methods in the double-talk and single-talk situations, respec-
tively. One can see that the ERLE and tERLE of EISS and IP al-
gorithms are almost the same, but when compared to SSM, both of
them have significantly higher values. Therefore, the proposed al-
gorithm demonstrates superior AEC performance compared to the
conventional SSM algorithm.

Fig. 2. The performance of SSM, IP and EISS: (a). tERLE in double-
talk situation, (b). ERLE in single-talk situation.

5.3. Overall Performance on the AEC Challenge Dataset

In this experiment, a total of 30 signals are arbitrarily taken from the
AEC challenge synthetic dataset [35]. The nonlinear far-end signals
are generated by clipping the maximum amplitude or by applying
the sigmoidal function [36] and learned distortion functions to far-
end signal. The SER of these signals ranges from −10 dB to 10 dB
and the T60 ranges from 200 ms to 1200 ms. Table 1 lists the overall
performance of the three algorithms in terms of PESQ, STOI, and

Table 1. Performance of SSM, IP and EISS.

Algorithm PESQ STOI tERLE
SSM 1.57 0.87 8.77

IP 1.89 0.93 12.89
EISS 1.9 0.94 12.63

tERLE. It can be seen that the proposed algorithm significantly out-
performs traditional nonlinear AEC algorithms across various noise
and reverberation environments and exhibits similar performance to
the IP-based algorithm.

5.4. Runtime Comparison

In the last set of experiments, we compare the runtime of the IP
and EISS method with the same setup as described previously. The
time measured here includes the time to compute and update the
covariance matrix and auxiliary variables. In this experiment, the
nonlinear expansion order P is set to 3 and 4, respectively. The CTF
filter length, i.e., L, varies from 2 to 12. As shown in Fig. 3, the EISS

Fig. 3. The runtime comparison between IP and EISS.

method is computationally much more efficient than the IP method
and the difference becomes much more dramatic as values of P and
L increases.

6. CONCLUSION

This paper investigated the problem of AEC in the presence of
doubletalk and loudspeaker nonlinearity within reverberant envi-
ronment. Following the framework of SBSS, we developed an
element-wise source steering algorithm, which combines the CTF
model and nonlinear expansion into the SBSS framework. Unlike
the conventional IP-based SBSS method, which requires to compute
the inverse of the auxiliary matrix, the proposed algorithm applies
an element-wise update strategy, in which no matrix inverse is in-
volved, and as a result, its computational complexity is one order
of magnitude lower than that of the IP-based algorithm. Moreover,
experiments showed that this efficient algorithm is able to achieve
similar performance to that of the IP-based algorithm.
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